GreedyKCenters.h
1 /*********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011, Rice University
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * * Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * * Redistributions in binary form must reproduce the above
14  * copyright notice, this list of conditions and the following
15  * disclaimer in the documentation and/or other materials provided
16  * with the distribution.
17  * * Neither the name of the Rice University nor the names of its
18  * contributors may be used to endorse or promote products derived
19  * from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *********************************************************************/
34 
35 /* Author: Mark Moll */
36 
37 #ifndef OMPL_DATASTRUCTURES_GREEDY_K_CENTERS_
38 #define OMPL_DATASTRUCTURES_GREEDY_K_CENTERS_
39 
40 #include "ompl/util/RandomNumbers.h"
41 #include <functional>
42 #include <Eigen/Core>
43 
44 namespace ompl
45 {
49  template <typename _T>
50  class GreedyKCenters
51  {
52  public:
54  using DistanceFunction = std::function<double(const _T &, const _T &)>;
56  using Matrix = Eigen::MatrixXd;
57 
58  GreedyKCenters() = default;
59 
60  virtual ~GreedyKCenters() = default;
61 
63  void setDistanceFunction(const DistanceFunction &distFun)
64  {
65  distFun_ = distFun;
66  }
67 
70  {
71  return distFun_;
72  }
73 
82  void kcenters(const std::vector<_T> &data, unsigned int k, std::vector<unsigned int> &centers, Matrix &dists)
83  {
84  // array containing the minimum distance between each data point
85  // and the centers computed so far
86  std::vector<double> minDist(data.size(), std::numeric_limits<double>::infinity());
87 
88  centers.clear();
89  centers.reserve(k);
90  if ((std::size_t)dists.rows() < data.size() || (std::size_t)dists.cols() < k)
91  dists.resize(std::max(2u * (std::size_t)dists.rows() + 1u, data.size()), k);
92  // first center is picked randomly
93  centers.push_back(rng_.uniformInt(0, data.size() - 1));
94  for (unsigned i = 1; i < k; ++i)
95  {
96  unsigned ind = 0;
97  const _T &center = data[centers[i - 1]];
98  double maxDist = -std::numeric_limits<double>::infinity();
99  for (unsigned j = 0; j < data.size(); ++j)
100  {
101  if ((dists(j, i - 1) = distFun_(data[j], center)) < minDist[j])
102  minDist[j] = dists(j, i - 1);
103  // the j-th center is the one furthest away from center 0,..,j-1
104  if (minDist[j] > maxDist)
105  {
106  ind = j;
107  maxDist = minDist[j];
108  }
109  }
110  // no more centers available
111  if (maxDist < std::numeric_limits<double>::epsilon())
112  break;
113  centers.push_back(ind);
114  }
115 
116  const _T &center = data[centers.back()];
117  unsigned i = centers.size() - 1;
118  for (unsigned j = 0; j < data.size(); ++j)
119  dists(j, i) = distFun_(data[j], center);
120  }
121 
122  protected:
125 
128  };
129 } // namespace ompl
130 
131 #endif
Random number generation. An instance of this class cannot be used by multiple threads at once (membe...
Definition: RandomNumbers.h:89
Eigen::MatrixXd Matrix
A matrix type for storing distances between points and centers.
const DistanceFunction & getDistanceFunction() const
Get the distance function used.
void setDistanceFunction(const DistanceFunction &distFun)
Set the distance function to use.
void kcenters(const std::vector< _T > &data, unsigned int k, std::vector< unsigned int > &centers, Matrix &dists)
Greedy algorithm for selecting k centers.
int uniformInt(int lower_bound, int upper_bound)
Generate a random integer within given bounds: [lower_bound, upper_bound].
std::function< double(const _T &, const _T &)> DistanceFunction
The definition of a distance function.
DistanceFunction distFun_
The used distance function.
Main namespace. Contains everything in this library.
Definition: AppBase.h:21