#include <ompl/geometric/planners/xxl/XXL.h>

Inheritance diagram for ompl::geometric::XXL:

Classes

class  Layer
 
struct  Motion
 
class  PerfectSet
 
struct  Region
 

Public Member Functions

 XXL (const base::SpaceInformationPtr &si)
 
 XXL (const base::SpaceInformationPtr &si, const XXLDecompositionPtr &decomp)
 
virtual void getPlannerData (base::PlannerData &data) const
 Get information about the current run of the motion planner. Repeated calls to this function will update data (only additions are made). This is useful to see what changed in the exploration datastructure, between calls to solve(), for example (without calling clear() in between).

 
virtual base::PlannerStatus solve (const base::PlannerTerminationCondition &ptc)
 Function that can solve the motion planning problem. This function can be called multiple times on the same problem, without calling clear() in between. This allows the planner to continue work for more time on an unsolved problem, for example. If this option is used, it is assumed the problem definition is not changed (unpredictable results otherwise). The only change in the problem definition that is accounted for is the addition of starting or goal states (but not changing previously added start/goal states). If clearQuery() is called, the planner may retain prior datastructures generated from a previous query on a new problem definition. The function terminates if the call to ptc returns true.
 
virtual void clear ()
 Clear all internal datastructures. Planner settings are not affected. Subsequent calls to solve() will ignore all previous work.
 
virtual void setup ()
 Perform extra configuration steps, if needed. This call will also issue a call to ompl::base::SpaceInformation::setup() if needed. This must be called before solving.
 
void setDecomposition (const XXLDecompositionPtr &decomp)
 
double getRandWalkRate () const
 
void setRandWalkRate (double rate)
 
- Public Member Functions inherited from ompl::base::Planner
 Planner (const Planner &)=delete
 
Planneroperator= (const Planner &)=delete
 
 Planner (SpaceInformationPtr si, std::string name)
 Constructor.
 
virtual ~Planner ()=default
 Destructor.
 
template<class T >
T * as ()
 Cast this instance to a desired type. More...
 
template<class T >
const T * as () const
 Cast this instance to a desired type. More...
 
const SpaceInformationPtrgetSpaceInformation () const
 Get the space information this planner is using.
 
const ProblemDefinitionPtrgetProblemDefinition () const
 Get the problem definition the planner is trying to solve.
 
ProblemDefinitionPtrgetProblemDefinition ()
 Get the problem definition the planner is trying to solve.
 
const PlannerInputStatesgetPlannerInputStates () const
 Get the planner input states.
 
virtual void setProblemDefinition (const ProblemDefinitionPtr &pdef)
 Set the problem definition for the planner. The problem needs to be set before calling solve(). Note: If this problem definition replaces a previous one, it may also be necessary to call clear() or clearQuery().
 
PlannerStatus solve (const PlannerTerminationConditionFn &ptc, double checkInterval)
 Same as above except the termination condition is only evaluated at a specified interval.
 
PlannerStatus solve (double solveTime)
 Same as above except the termination condition is solely a time limit: the number of seconds the algorithm is allowed to spend planning.
 
virtual void clearQuery ()
 Clears internal datastructures of any query-specific information from the previous query. Planner settings are not affected. The planner, if able, should retain all datastructures generated from previous queries that can be used to help solve the next query. Note that clear() should also clear all query-specific information along with all other datastructures in the planner. By default clearQuery() calls clear().
 
const std::string & getName () const
 Get the name of the planner.
 
void setName (const std::string &name)
 Set the name of the planner.
 
const PlannerSpecsgetSpecs () const
 Return the specifications (capabilities of this planner)
 
virtual void checkValidity ()
 Check to see if the planner is in a working state (setup has been called, a goal was set, the input states seem to be in order). In case of error, this function throws an exception.
 
bool isSetup () const
 Check if setup() was called for this planner.
 
ParamSetparams ()
 Get the parameters for this planner.
 
const ParamSetparams () const
 Get the parameters for this planner.
 
const PlannerProgressPropertiesgetPlannerProgressProperties () const
 Retrieve a planner's planner progress property map.
 
virtual void printProperties (std::ostream &out) const
 Print properties of the motion planner.
 
virtual void printSettings (std::ostream &out) const
 Print information about the motion planner's settings.
 

Protected Member Functions

void freeMemory ()
 
void allocateLayers (Layer *layer)
 
void updateRegionConnectivity (const Motion *m1, const Motion *m2, int layer)
 
LayergetLayer (const std::vector< int > &regions, int layer)
 
int addState (const base::State *state)
 
int addThisState (base::State *state)
 
int addGoalState (const base::State *state)
 
int addStartState (const base::State *state)
 
void updateRegionProperties (const std::vector< int > &regions)
 
void updateRegionProperties (Layer *layer, int region)
 
void sampleStates (Layer *layer, const ompl::base::PlannerTerminationCondition &ptc)
 
bool sampleAlongLead (Layer *layer, const std::vector< int > &lead, const ompl::base::PlannerTerminationCondition &ptc)
 
int steerToRegion (Layer *layer, int from, int to)
 
int expandToRegion (Layer *layer, int from, int to, bool useExisting=false)
 
bool feasibleLead (Layer *layer, const std::vector< int > &lead, const ompl::base::PlannerTerminationCondition &ptc)
 
bool connectLead (Layer *layer, const std::vector< int > &lead, std::vector< int > &candidateRegions, const ompl::base::PlannerTerminationCondition &ptc)
 
void connectRegion (Layer *layer, int region, const base::PlannerTerminationCondition &ptc)
 
void connectRegions (Layer *layer, int r1, int r2, const base::PlannerTerminationCondition &ptc, bool all=false)
 
void computeLead (Layer *layer, std::vector< int > &lead)
 
bool searchForPath (Layer *layer, const ompl::base::PlannerTerminationCondition &ptc)
 
void getNeighbors (int rid, const std::vector< double > &weights, std::vector< std::pair< int, double >> &neighbors) const
 
bool shortestPath (int r1, int r2, std::vector< int > &path, const std::vector< double > &weights)
 
bool randomWalk (int r1, int r2, std::vector< int > &path)
 
void getGoalStates ()
 
void getGoalStates (const base::PlannerTerminationCondition &ptc)
 
bool constructSolutionPath ()
 
bool isStartState (int idx) const
 
bool isGoalState (int idx) const
 
void writeDebugOutput () const
 
- Protected Member Functions inherited from ompl::base::Planner
template<typename T , typename PlannerType , typename SetterType , typename GetterType >
void declareParam (const std::string &name, const PlannerType &planner, const SetterType &setter, const GetterType &getter, const std::string &rangeSuggestion="")
 This function declares a parameter for this planner instance, and specifies the setter and getter functions.
 
template<typename T , typename PlannerType , typename SetterType >
void declareParam (const std::string &name, const PlannerType &planner, const SetterType &setter, const std::string &rangeSuggestion="")
 This function declares a parameter for this planner instance, and specifies the setter function.
 
void addPlannerProgressProperty (const std::string &progressPropertyName, const PlannerProgressProperty &prop)
 Add a planner progress property called progressPropertyName with a property querying function prop to this planner's progress property map.
 

Protected Attributes

LayertopLayer_ {nullptr}
 
std::vector< Motion * > motions_
 
std::vector< int > startMotions_
 
std::vector< int > goalMotions_
 
std::unordered_map< std::vector< int >, int > goalCount_
 
base::Statexstate_
 
unsigned int statesConnectedInRealGraph_
 
unsigned int maxGoalStatesPerRegion_
 
unsigned int maxGoalStates_
 
RNG rng_
 
base::StateSamplerPtr sampler_
 
XXLDecompositionPtr decomposition_
 
AdjacencyList lazyGraph_
 
AdjacencyList realGraph_
 
bool kill_ {false}
 
std::vector< int > predecessors_
 
std::vector< bool > closedList_
 
double rand_walk_rate_ {-1.0}
 
- Protected Attributes inherited from ompl::base::Planner
SpaceInformationPtr si_
 The space information for which planning is done.
 
ProblemDefinitionPtr pdef_
 The user set problem definition.
 
PlannerInputStates pis_
 Utility class to extract valid input states

 
std::string name_
 The name of this planner.
 
PlannerSpecs specs_
 The specifications of the planner (its capabilities)
 
ParamSet params_
 A map from parameter names to parameter instances for this planner. This field is populated by the declareParam() function.
 
PlannerProgressProperties plannerProgressProperties_
 A mapping between this planner's progress property names and the functions used for querying those progress properties.
 
bool setup_
 Flag indicating whether setup() has been called.
 

Additional Inherited Members

- Public Types inherited from ompl::base::Planner
using PlannerProgressProperty = std::function< std::string()>
 Definition of a function which returns a property about the planner's progress that can be queried by a benchmarking routine.
 
using PlannerProgressProperties = std::map< std::string, PlannerProgressProperty >
 A dictionary which maps the name of a progress property to the function to be used for querying that property.
 

Detailed Description

XXL is a probabilistically complete sampling-based algorithm designed to plan the motions of high-dimensional mobile manipulators and related platforms. Using a novel sampling and connection strategy that guides a set of points mapped on the robot through the workspace, XXL scales to realistic manipulator platforms with dozens of joints by focusing the search of the robot's configuration space to specific degrees-of-freedom that affect motion in particular portions of the workspace. Simulated planning scenarios with the Robonaut2 platform and planar kinematic chains confirm that XXL exhibits competitive solution times relative to many existing works while obtaining execution-quality solution paths. Solutions from XXL are of comparable quality to costaware methods even though XXL does not explicitly optimize over any particular criteria, and are computed in an order of magnitude less time.

Associated publication:
R. Luna, M. Moll, J. Badger, and L. E. Kavraki, A Scalable Motion Planner for High-Dimensional Kinematic Systems, Intl. J. of Robotics Research, vol. 39, issue 4, pp. 361-388, Mar. 2020. DOI: 10.1177/0278364919890408
[PDF]

Definition at line 64 of file XXL.h.

Member Function Documentation

◆ searchForPath()

bool ompl::geometric::XXL::searchForPath ( Layer layer,
const ompl::base::PlannerTerminationCondition ptc 
)
protected

the search in specific regions identified during connection attempts

Definition at line 1288 of file XXL.cpp.


The documentation for this class was generated from the following files:
  • ompl/geometric/planners/xxl/XXL.h
  • ompl/geometric/planners/xxl/src/XXL.cpp