|
| LazyRRT (const base::SpaceInformationPtr &si) |
| Constructor.
|
|
void | getPlannerData (base::PlannerData &data) const override |
| Get information about the current run of the motion planner. Repeated calls to this function will update data (only additions are made). This is useful to see what changed in the exploration datastructure, between calls to solve(), for example (without calling clear() in between).
|
|
base::PlannerStatus | solve (const base::PlannerTerminationCondition &ptc) override |
| Function that can solve the motion planning problem. This function can be called multiple times on the same problem, without calling clear() in between. This allows the planner to continue work for more time on an unsolved problem, for example. If this option is used, it is assumed the problem definition is not changed (unpredictable results otherwise). The only change in the problem definition that is accounted for is the addition of starting or goal states (but not changing previously added start/goal states). If clearQuery() is called, the planner may retain prior datastructures generated from a previous query on a new problem definition. The function terminates if the call to ptc returns true.
|
|
void | clear () override |
| Clear all internal datastructures. Planner settings are not affected. Subsequent calls to solve() will ignore all previous work.
|
|
void | setGoalBias (double goalBias) |
| Set the goal biasing. More...
|
|
double | getGoalBias () const |
| Get the goal bias the planner is using.
|
|
void | setRange (double distance) |
| Set the range the planner is supposed to use. More...
|
|
double | getRange () const |
| Get the range the planner is using.
|
|
template<template< typename T > class NN> |
void | setNearestNeighbors () |
| Set a different nearest neighbors datastructure.
|
|
void | setup () override |
| Perform extra configuration steps, if needed. This call will also issue a call to ompl::base::SpaceInformation::setup() if needed. This must be called before solving.
|
|
| Planner (const Planner &)=delete |
|
Planner & | operator= (const Planner &)=delete |
|
| Planner (SpaceInformationPtr si, std::string name) |
| Constructor.
|
|
virtual | ~Planner ()=default |
| Destructor.
|
|
template<class T > |
T * | as () |
| Cast this instance to a desired type. More...
|
|
template<class T > |
const T * | as () const |
| Cast this instance to a desired type. More...
|
|
const SpaceInformationPtr & | getSpaceInformation () const |
| Get the space information this planner is using.
|
|
const ProblemDefinitionPtr & | getProblemDefinition () const |
| Get the problem definition the planner is trying to solve.
|
|
ProblemDefinitionPtr & | getProblemDefinition () |
| Get the problem definition the planner is trying to solve.
|
|
const PlannerInputStates & | getPlannerInputStates () const |
| Get the planner input states.
|
|
virtual void | setProblemDefinition (const ProblemDefinitionPtr &pdef) |
| Set the problem definition for the planner. The problem needs to be set before calling solve(). Note: If this problem definition replaces a previous one, it may also be necessary to call clear() or clearQuery().
|
|
PlannerStatus | solve (const PlannerTerminationConditionFn &ptc, double checkInterval) |
| Same as above except the termination condition is only evaluated at a specified interval.
|
|
PlannerStatus | solve (double solveTime) |
| Same as above except the termination condition is solely a time limit: the number of seconds the algorithm is allowed to spend planning.
|
|
virtual void | clearQuery () |
| Clears internal datastructures of any query-specific information from the previous query. Planner settings are not affected. The planner, if able, should retain all datastructures generated from previous queries that can be used to help solve the next query. Note that clear() should also clear all query-specific information along with all other datastructures in the planner. By default clearQuery() calls clear().
|
|
const std::string & | getName () const |
| Get the name of the planner.
|
|
void | setName (const std::string &name) |
| Set the name of the planner.
|
|
const PlannerSpecs & | getSpecs () const |
| Return the specifications (capabilities of this planner)
|
|
virtual void | checkValidity () |
| Check to see if the planner is in a working state (setup has been called, a goal was set, the input states seem to be in order). In case of error, this function throws an exception.
|
|
bool | isSetup () const |
| Check if setup() was called for this planner.
|
|
ParamSet & | params () |
| Get the parameters for this planner.
|
|
const ParamSet & | params () const |
| Get the parameters for this planner.
|
|
const PlannerProgressProperties & | getPlannerProgressProperties () const |
| Retrieve a planner's planner progress property map.
|
|
virtual void | printProperties (std::ostream &out) const |
| Print properties of the motion planner.
|
|
virtual void | printSettings (std::ostream &out) const |
| Print information about the motion planner's settings.
|
|
|
void | freeMemory () |
| Free the memory allocated by this planner.
|
|
void | removeMotion (Motion *motion) |
| Remove a motion from the tree datastructure.
|
|
double | distanceFunction (const Motion *a, const Motion *b) const |
| Compute distance between motions (actually distance between contained states)
|
|
template<typename T , typename PlannerType , typename SetterType , typename GetterType > |
void | declareParam (const std::string &name, const PlannerType &planner, const SetterType &setter, const GetterType &getter, const std::string &rangeSuggestion="") |
| This function declares a parameter for this planner instance, and specifies the setter and getter functions.
|
|
template<typename T , typename PlannerType , typename SetterType > |
void | declareParam (const std::string &name, const PlannerType &planner, const SetterType &setter, const std::string &rangeSuggestion="") |
| This function declares a parameter for this planner instance, and specifies the setter function.
|
|
void | addPlannerProgressProperty (const std::string &progressPropertyName, const PlannerProgressProperty &prop) |
| Add a planner progress property called progressPropertyName with a property querying function prop to this planner's progress property map.
|
|
Lazy RRT.
- Short description
- RRT is a tree-based motion planner that uses the following idea: RRT samples a random state qr in the state space, then finds the state qc among the previously seen states that is closest to qr and expands from qc towards qr, until a state qm is reached. qm is then added to the exploration tree. The difference between RRT and LazyRRT is that when moving towards the new state qm, LazyRRT does not check to make sure the path is valid. Instead, it is optimistic and attempts to find a path as soon as possible. Once a path is found, it is checked for collision. If collisions are found, the invalid path segments are removed and the search process is continued.
- External documentation
- J. Kuffner and S.M. LaValle, RRT-connect: An efficient approach to single-query path planning, in Proc. 2000 IEEE Intl. Conf. on Robotics and Automation, pp. 995–1001, Apr. 2000. DOI: 10.1109/ROBOT.2000.844730
[PDF] [more]
- R. Bohlin and L.E. Kavraki, A Randomized Algorithm for Robot Path Planning Based on Lazy Evaluation, in Handbook on Randomized Computing, pp. 221–249, 2001.
[PDF]
- R. Bohlin and L.E. Kavraki, Path planning using lazy PRM, in Proc. 2000 IEEE Intl. Conf. on Robotics and Automation, pp. 521–528, 2000. DOI: 10.1109/ROBOT.2000.844107
[PDF]
Definition at line 145 of file LazyRRT.h.