ompl::control::ODEBasicSolver< Solver > Class Template Reference

Basic solver for ordinary differential equations of the type q' = f(q, u), where q is the current state of the system and u is a control applied to the system. StateType defines the container object describing the state of the system. Solver is the numerical integration method used to solve the equations. The default is a fourth order Runge-Kutta method. This class wraps around the simple stepper concept from boost::numeric::odeint. More...

#include <ompl/control/ODESolver.h>

Inheritance diagram for ompl::control::ODEBasicSolver< Solver >:

Public Member Functions

 ODEBasicSolver (const SpaceInformationPtr &si, const ODESolver::ODE &ode, double intStep=1e-2)
 Parameterized constructor. Takes a reference to the SpaceInformation, an ODE to solve, and an optional integration step size - default is 0.01.
 
- Public Member Functions inherited from ompl::control::ODESolver
 ODESolver (SpaceInformationPtr si, ODE ode, double intStep)
 Parameterized constructor. Takes a reference to SpaceInformation, an ODE to solve, and the integration step size.
 
virtual ~ODESolver ()=default
 Destructor.
 
void setODE (const ODE &ode)
 Set the ODE to solve.
 
double getIntegrationStepSize () const
 Return the size of a single numerical integration step.
 
void setIntegrationStepSize (double intStep)
 Set the size of a single numerical integration step.
 
const SpaceInformationPtrgetSpaceInformation () const
 Get the current instance of the space information.
 

Protected Member Functions

void solve (StateType &state, const Control *control, double duration) const override
 Solve the ODE using boost::numeric::odeint.
 

Additional Inherited Members

- Public Types inherited from ompl::control::ODESolver
using StateType = std::vector< double >
 Portable data type for the state values.
 
using ODE = std::function< void(const StateType &, const Control *, StateType &)>
 Callback function that defines the ODE. Accepts the current state, input control, and output state.
 
using PostPropagationEvent = std::function< void(const base::State *, const Control *, double, base::State *)>
 Callback function to perform an event at the end of numerical integration. This functionality is optional.
 
- Static Public Member Functions inherited from ompl::control::ODESolver
static StatePropagatorPtr getStatePropagator (ODESolverPtr solver, const PostPropagationEvent &postEvent=nullptr)
 Retrieve a StatePropagator object that solves a system of ordinary differential equations defined by an ODESolver. An optional PostPropagationEvent can also be specified as a callback after numerical integration is finished for further operations on the resulting state.
 
- Protected Attributes inherited from ompl::control::ODESolver
const SpaceInformationPtr si_
 The SpaceInformation that this ODESolver operates in.
 
ODE ode_
 Definition of the ODE to find solutions for.
 
double intStep_
 The size of the numerical integration step. Should be small to minimize error.
 

Detailed Description

template<class Solver = odeint::runge_kutta4<ODESolver::StateType>>
class ompl::control::ODEBasicSolver< Solver >

Basic solver for ordinary differential equations of the type q' = f(q, u), where q is the current state of the system and u is a control applied to the system. StateType defines the container object describing the state of the system. Solver is the numerical integration method used to solve the equations. The default is a fourth order Runge-Kutta method. This class wraps around the simple stepper concept from boost::numeric::odeint.

Definition at line 263 of file ODESolver.h.


The documentation for this class was generated from the following file: