ProductGraph.cpp
1 /*********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2012, Rice University
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the Rice University nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *********************************************************************/
34 
35 /* Author: Matt Maly */
36 
37 #include "ompl/control/planners/ltl/ProductGraph.h"
38 #include "ompl/base/State.h"
39 #include "ompl/control/planners/ltl/Automaton.h"
40 #include "ompl/control/planners/ltl/PropositionalDecomposition.h"
41 #include "ompl/control/planners/ltl/World.h"
42 #include "ompl/util/ClassForward.h"
43 #include "ompl/util/Console.h"
44 #include "ompl/util/Hash.h"
45 #include <algorithm>
46 #include <boost/graph/adjacency_list.hpp>
47 #include <boost/graph/dijkstra_shortest_paths.hpp>
48 #include <unordered_map>
49 #include <unordered_set>
50 #include <map>
51 #include <ostream>
52 #include <queue>
53 #include <stack>
54 #include <utility>
55 #include <vector>
56 
58 {
59  return decompRegion == s.decompRegion && cosafeState == s.cosafeState && safeState == s.safeState;
60 }
61 
63 {
64  return cosafeState != -1 && safeState != -1;
65 }
66 
67 std::size_t ompl::control::ProductGraph::HashState::operator()(const ompl::control::ProductGraph::State &s) const
68 {
69  std::size_t hash = std::hash<int>()(s.decompRegion);
70  hash_combine(hash, s.cosafeState);
71  hash_combine(hash, s.safeState);
72  return hash;
73 }
74 
75 namespace ompl
76 {
77  namespace control
78  {
79  std::ostream &operator<<(std::ostream &out, const ProductGraph::State &s)
80  {
81  out << "(" << s.decompRegion << "," << s.cosafeState << ",";
82  out << s.safeState << ")";
83  return out;
84  }
85  }
86 }
87 
89 {
90  return decompRegion;
91 }
92 
94 {
95  return cosafeState;
96 }
97 
99 {
100  return safeState;
101 }
102 
104  AutomatonPtr safetyAut)
105  : decomp_(std::move(decomp)), cosafety_(std::move(cosafetyAut)), safety_(std::move(safetyAut))
106 {
107 }
108 
110  : decomp_(decomp), cosafety_(std::move(cosafetyAut)), safety_(Automaton::AcceptingAutomaton(decomp->getNumProps()))
111 {
112 }
113 
114 ompl::control::ProductGraph::~ProductGraph()
115 {
116  clear();
117 }
118 
120 {
121  return decomp_;
122 }
123 
125 {
126  return cosafety_;
127 }
128 
130 {
131  return safety_;
132 }
133 
134 std::vector<ompl::control::ProductGraph::State *> ompl::control::ProductGraph::computeLead(
135  ProductGraph::State *start, const std::function<double(ProductGraph::State *, ProductGraph::State *)> &edgeWeight)
136 {
137  std::vector<GraphType::vertex_descriptor> parents(boost::num_vertices(graph_));
138  std::vector<double> distances(boost::num_vertices(graph_));
139  // first build up the edge weights
140  for (auto [ei, eend] = boost::edges(graph_); ei != eend; ++ei)
141  {
142  GraphType::vertex_descriptor src = boost::source(*ei, graph_);
143  GraphType::vertex_descriptor target = boost::target(*ei, graph_);
144  graph_[*ei].cost = edgeWeight(graph_[src], graph_[target]);
145  }
146  int startIndex = stateToIndex_[start];
147  boost::dijkstra_shortest_paths(
148  graph_, boost::vertex(startIndex, graph_),
149  boost::weight_map(get(&Edge::cost, graph_))
150  .distance_map(boost::make_iterator_property_map(distances.begin(), get(boost::vertex_index, graph_)))
151  .predecessor_map(boost::make_iterator_property_map(parents.begin(), get(boost::vertex_index, graph_))));
152  // pick state from solutionStates_ such that distance[state] is minimized
153  State *bestSoln = *solutionStates_.begin();
154  double cost = distances[boost::vertex(stateToIndex_[bestSoln], graph_)];
155  for (std::vector<State *>::const_iterator s = solutionStates_.begin() + 1; s != solutionStates_.end(); ++s)
156  {
157  if (distances[boost::vertex(stateToIndex_[*s], graph_)] < cost)
158  {
159  cost = distances[boost::vertex(stateToIndex_[*s], graph_)];
160  bestSoln = *s;
161  }
162  }
163  // build lead from bestSoln parents
164  std::stack<State *> leadStack;
165  while (!(bestSoln == start))
166  {
167  leadStack.push(bestSoln);
168  bestSoln = graph_[parents[boost::vertex(stateToIndex_[bestSoln], graph_)]];
169  }
170  leadStack.push(bestSoln);
171 
172  std::vector<State *> lead;
173  while (!leadStack.empty())
174  {
175  lead.push_back(leadStack.top());
176  leadStack.pop();
177  // Truncate the lead as early when it hits the desired automaton states
178  // \todo: more elegant way to do this?
179  if (lead.back()->cosafeState == solutionStates_.front()->cosafeState &&
180  lead.back()->safeState == solutionStates_.front()->safeState)
181  break;
182  }
183  return lead;
184 }
185 
187 {
188  solutionStates_.clear();
189  stateToIndex_.clear();
190  startState_ = nullptr;
191  graph_.clear();
192  for (auto &i : stateToPtr_)
193  delete i.second;
194  stateToPtr_.clear();
195 }
196 
197 void ompl::control::ProductGraph::buildGraph(State *start, const std::function<void(State *)> &initialize)
198 {
199  graph_.clear();
200  solutionStates_.clear();
201  std::queue<State *> q;
202  std::unordered_set<State *> processed;
203  std::vector<int> regNeighbors;
204  VertexIndexMap index = get(boost::vertex_index, graph_);
205 
206  GraphType::vertex_descriptor next = boost::add_vertex(graph_);
207  startState_ = start;
208  graph_[boost::vertex(next, graph_)] = startState_;
209  stateToIndex_[startState_] = index[next];
210  q.push(startState_);
211  processed.insert(startState_);
212 
213  OMPL_INFORM("Building graph from start state (%u,%u,%u) with index %d", startState_->decompRegion,
214  startState_->cosafeState, startState_->safeState, stateToIndex_[startState_]);
215 
216  while (!q.empty())
217  {
218  State *current = q.front();
219  // Initialize each state using the supplied state initializer function
220  initialize(current);
221  q.pop();
222 
223  if (safety_->isAccepting(current->safeState) && cosafety_->isAccepting(current->cosafeState))
224  {
225  solutionStates_.push_back(current);
226  }
227 
228  GraphType::vertex_descriptor v = boost::vertex(stateToIndex_[current], graph_);
229 
230  // enqueue each neighbor of current
231  decomp_->getNeighbors(current->decompRegion, regNeighbors);
232  for (const auto &r : regNeighbors)
233  {
234  State *nextState = getState(current, r);
235  if (!nextState->isValid())
236  continue;
237  // if this state is newly discovered,
238  // then we can dynamically allocate a copy of it
239  // and add the new pointer to the graph.
240  // either way, we need the pointer
241  if (processed.find(nextState) == processed.end())
242  {
243  const GraphType::vertex_descriptor next = boost::add_vertex(graph_);
244  stateToIndex_[nextState] = index[next];
245  graph_[boost::vertex(next, graph_)] = nextState;
246  q.push(nextState);
247  processed.insert(nextState);
248  }
249 
250  // whether or not the neighbor is newly discovered,
251  // we still need to add the edge to the graph
252  GraphType::edge_descriptor edge;
253  bool ignore;
254  boost::tie(edge, ignore) = boost::add_edge(v, boost::vertex(stateToIndex_[nextState], graph_), graph_);
255  // graph_[edge].src = index[v];
256  // graph_[edge].dest = stateToIndex_[nextState];
257  }
258  regNeighbors.clear();
259  }
260  if (solutionStates_.empty())
261  {
262  OMPL_ERROR("No solution path found in product graph.");
263  }
264 
265  OMPL_INFORM("Number of decomposition regions: %u", decomp_->getNumRegions());
266  OMPL_INFORM("Number of cosafety automaton states: %u", cosafety_->numStates());
267  OMPL_INFORM("Number of safety automaton states: %u", safety_->numStates());
268  OMPL_INFORM("Number of high-level states in abstraction graph: %u", boost::num_vertices(graph_));
269 }
270 
272 {
273  return std::find(solutionStates_.begin(), solutionStates_.end(), s) != solutionStates_.end();
274 }
275 
277 {
278  return startState_;
279 }
280 
282 {
283  return decomp_->getRegionVolume(s->decompRegion);
284 }
285 
287 {
288  return cosafety_->distFromAccepting(s->cosafeState);
289 }
290 
292 {
293  return safety_->distFromAccepting(s->safeState);
294 }
295 
297 {
298  return getState(cs, cosafety_->getStartState(), safety_->getStartState());
299 }
300 
302  int safe) const
303 {
304  State s;
305  s.decompRegion = decomp_->locateRegion(cs);
306  s.cosafeState = cosafe;
307  s.safeState = safe;
308  State *&ret = stateToPtr_[s];
309  if (ret == nullptr)
310  ret = new State(s);
311  return ret;
312 }
313 
315 {
316  State s;
317  s.decompRegion = nextRegion;
318  const World nextWorld = decomp_->worldAtRegion(nextRegion);
319  s.cosafeState = cosafety_->step(parent->cosafeState, nextWorld);
320  s.safeState = safety_->step(parent->safeState, nextWorld);
321  State *&ret = stateToPtr_[s];
322  if (ret == nullptr)
323  ret = new State(s);
324  return ret;
325 }
326 
328  const base::State *cs) const
329 {
330  return getState(parent, decomp_->locateRegion(cs));
331 }
bool isSolution(const State *s) const
Returns whether the given State is an accepting State in this ProductGraph. We call a State accepting...
bool isValid() const
Returns whether this State is valid. A State is valid if and only if none of its Automaton states are...
const AutomatonPtr & getCosafetyAutom() const
Returns the co-safe Automaton contained within this ProductGraph.
const PropositionalDecompositionPtr & getDecomp() const
Returns the PropositionalDecomposition contained within this ProductGraph.
bool operator==(const State &s) const
Returns whether this State is equivalent to a given State, by comparing their PropositionalDecomposit...
int getDecompRegion() const
Returns this State's PropositionalDecomposition region component.
int getSafeState() const
Returns this State's safe Automaton state component.
Definition of an abstract state.
Definition: State.h:113
int getCosafeAutDistance(const State *s) const
Helper method to return the distance from a given State's co-safety state to an accepting state in th...
#define OMPL_INFORM(fmt,...)
Log a formatted information string.
Definition: Console.h:68
std::vector< State * > computeLead(State *start, const std::function< double(State *, State *)> &edgeWeight)
Returns a shortest-path sequence of ProductGraph states, beginning with a given initial State and end...
State * getState(const base::State *cs) const
Returns a ProductGraph State with initial co-safety and safety Automaton states, and the Propositiona...
A State of a ProductGraph represents a vertex in the graph-based Cartesian product represented by the...
Definition: ProductGraph.h:147
A shared pointer wrapper for ompl::control::Automaton.
ProductGraph(PropositionalDecompositionPtr decomp, AutomatonPtr cosafetyAut, AutomatonPtr safetyAut)
Initializes a ProductGraph with a given PropositionalDecomposition, co-safe Automaton,...
State * getStartState() const
Returns the initial State of this ProductGraph.
void clear()
Clears all memory belonging to this ProductGraph.
A class to represent a deterministic finite automaton, each edge of which corresponds to a World....
Definition: Automaton.h:134
#define OMPL_ERROR(fmt,...)
Log a formatted error string.
Definition: Console.h:64
A shared pointer wrapper for ompl::control::PropositionalDecomposition.
int getCosafeState() const
Returns this State's co-safe Automaton state component.
const AutomatonPtr & getSafetyAutom() const
Returns the safe Automaton contained within this ProductGraph.
int getSafeAutDistance(const State *s) const
Helper method to return the distance from a given State's safety state to an accepting state in the s...
double getRegionVolume(const State *s)
Helper method to return the volume of the PropositionalDecomposition region corresponding to the give...
Main namespace. Contains everything in this library.
void buildGraph(State *start, const std::function< void(State *)> &initialize=[](State *){})
Constructs this ProductGraph beginning with a given initial State, using a breadth-first search....
A class to represent an assignment of boolean values to propositions. A World can be partially restri...
Definition: World.h:71